
J Math Chem (2008) 44:172–183
DOI 10.1007/s10910-007-9299-6

ORIGINAL PAPER

Molecular solution to the optimal linear arrangement
problem based on DNA computation

Xingchang Liu · Xiaofan Yang · Yuan Yan Tang

Received: 3 March 2007 / Accepted: 12 July 2007 / Published online: 21 September 2007
© Springer Science+Business Media, LLC 2007

Abstract Due to massive parallelism, enormous memory storage and very low
energy consumption, biomolecular operations have been suggested to solve various
NP-hard problems that are beyond the capability of the fastest known digital computer.
The optimal linear arrangement (OLA) problem is a well-known NP-hard combinato-
rial optimization problem. Based on a DNA computational model, this paper describes
a novel algorithm for the OLA problem, which is executed in O(n3 log2 n) DNA oper-
ations on tubes of (nK + n + m + L + 1)-bits DNA strands, where K = ⌈

log2 n
⌉

and L = ⌈
log2 (nm)

⌉ + 1. With the advance in molecular biology techniques, this
algorithm may be of practical utility.

Keywords DNA computation · DNA algorithm · Adleman-Lipton-sticker model ·
Optimal linear arrangement problem · NP-hardness

1 Introduction

DNA computation uses DNA as information storage and biochemical operations to
process the information. It can be used to solve computationally intractable (technically,
NP-complete or NP-hard) problems due to its advantages over conventional digi-
tal computing: massive parallelism, enormous memory storage and low energy con-
sumption. Since the seminal work by Adleman [1] that describes how to solve a
seven-node instance of a well-known NP-hard problem (the directed Hamiltonian

X. Liu · X. Yang (B) · Y. Y. Tang
College of Computer Science, Chongqing University, Chongqing, 400044, China
e-mail: xf_yang1964@yahoo.com

X. Liu
Department of Logistical, Information Engineering, Logistical Engineering University, Chongqing,
400016, China

123

J Math Chem (2008) 44:172–183 173

path problem) via biological operations, DNA computation has received considerable
interests from researchers. In particular, several typical DNA computational models
have already been established (say, the Adleman-Lipton model [1,2], the restriction-
enzyme model [3], the sticker model [4], the surface-based model [5], the self-assembly
model [6] and the hairpin model [7]). Based on these models, a number of NP-complete
(or NP-hard) problems have been solved at least theoretically [1–3,8–14]. In order to
fully understanding the power of biological computation, it is worthwhile to try to solve
more kinds of computationally intractable problems with the aid of DNA operations.

The optimal linear arrangement (OLA) problem, which was introduced by Harper
to design error-correcting codes with minimal average absolute errors on certain clas-
ses of graph, is to find a permutation π of vertices V of a given graph such that the
cost

∑
(i, j)∈E |π(i) − π(j)| is minimum [15,16]. Some graph layout problems, such

as bandwidth and cutwidth, are the variations of the OLA. The primary applications
of the OLA are in the areas of circuit design and circuit layout [17–20]. Additionally,
The OLA also plays an important role in computational biology [21], graph drawing
[22], and so on. The OLA is well known to be NP-hard, and in some sense even more
difficult than NP-hardness alone would indicate [23,24]. As a result, various heuristic
algorithms have been devised for the OLA [17,25–27].

Motivated by the above mentioned work, this paper presents a molecular algorithm
for the OLA problem based on a combination of Adleman-Lipton model and the
sticker model. The proposed algorithm suggests a promising solution to the OLA for
it requires only O(n3 log2 n) DNA operations on tube of (nK + n + m + L + 1)-bits
DNA strands, where n = |V |, m = |E |, K = ⌈

log2 n
⌉

, and L = ⌈
log2 (nm)

⌉ + 1. It
may play an important role in practice, when further advances in biological techniques
lead to an efficient implementation of DNA computer.

This paper is organized as follows. Section 2 formally describes the Adleman-
Lipton-sticker model and the OLA problem. Sections 3 and 4 propose a novel DNA
algorithm for the OLA problem and analyze its complexity. Section 5 closes this work
by some summary remarks.

2 Preliminary knowledge

In this paper, we formally describe the Adleman-Lipton-sticker model of DNA com-
putation. We then formalize the OLA problem.

2.1 DNA computation

A DNA molecule is a polymer constructed from monomers called deoxyribonucleo-
tides, which are strung together in a strand like beads on a necklace. A schematic
representation of a DNA molecule is shown in Fig. 1. Every deoxyribonucleotide is
comprised of three parts: a ribose group, a phosphate group and a nitrogenous base.
The ribose has five carbon atoms, which are numbered from 1′ to 5′. Within the ribose
there is a hydroxyl group attached to the 3′ carbon. The base is attached to the 1′ carbon,
and the phosphate group is attached to the 5′ carbon. In DNA molecules, nucleotides
are only distinguished from their bases, which are adenine, guanine, cytosine, and

123

174 J Math Chem (2008) 44:172–183

Fig. 1 A schematic
representation of a DNA
molecule

thymine, respectively abbreviated A, G, C , and T . Therefore, nucleotides are simply
represented as A, G, C , or T nucleotides, according to their corresponding bases.

Any single strand of DNA is linked by a backbone that is formed by the alternat-
ing phosphate and ribose of each nucleotide, in which the 5′-phosphate group of one
nucleotide is joined with the 3′-hydroxyl group of the other. This gives the DNA mol-
ecule a direction from 5′-phosphate group (denoted by 5′ end) to 3′-hydroxyl group
(denoted by 3′ end), or reverse direction from 3′ end to 5′ end.

DNA is best known for double-helix bonding. Nucleotides in respective DNA
strands are attracted each other by hydrogen bond, which is formed by the base of one
nucleotide interacting with the base of the other. This attraction exists only in restrict
pairs of bases: A matches T , and C matches G. This pairing principle is called the
Watson–Crick complement rule. Two strands of DNA can form the most stable double
helix, only if the respective bases are the Watson–Crick complements of each other,
and also 3′ end matches 5′ end.

Along with the development of molecular biology techniques, the DNA strands can
be quickly and cheaply synthesized. Thus, they can store information in the form of
four-letter strings (A, G, C and T) at molecular level. Founded on above idea, DNA
computation proceeds in three phases: first, generate a data pool of DNA strands that
encode all possible solutions to the studied problem; second, by employing molecu-
lar biology laboratory techniques, orderly apply a series of DNA operations on DNA
strands to in large exclude the DNA strands that do not satisfy logic constraints of the
problem; third, detect whether a result set contains at the least one DNA strand, if do,
describe it, i.e., readout answer. The second step is a typical data-parallel computation
that greatly accelerates a tedious computing process for a hard problem.

2.2 The Adleman-Lipton-sticker model

The Adleman-Lipton-sticker model is a DNA computational model, which fully utilizes
the advantages of both the Adleman-Lipton model and the sticker model. Below is a
detailed description of this hybrid model.

123

J Math Chem (2008) 44:172–183 175

2.2.1 Representation of information

Under the Adleman-Lipton-sticker model, information (a bit string) is represented by
the partial duplex DNA strand called memory complex. Memory complex involves
two basic groups of single stranded DNA molecules: the longer memory strands and
the shorter sticker strands (or simply sticker). A typical memory strand is divided into
N non-overlapping regions (known as bits) with B bases each (typically, B := 20).
Corresponding to N -bits memory strand, N different sticker is needed. Each sticker
is B bases long and is complementary to one and only one of the N bits according to
the Watson–Crick complement rule. A bit of a given memory strand assumes value 1
or 0 depending on whether its corresponding sticker is annealed to this region or not.
In this way, a bit string of {0, 1}N is represented by a N -bits memory strand with
stickers annealed only at required regions. Accordingly, a large set of bit strings is
represented by a collection of memory complexes, called a tube.

According to Sect. 2.1, the first step of DNA computation is to generate solution
space of DNA strands. Consider a problem with M-bits input. It is clear that there are
2M possible solutions and, hence, the memory strand encoding the possible solutions
must have more than M bits. The first Mbits, we called solution space, represent the
encoding of the possible solution and are “randomly” annealed with corresponding
stickers at the first step. The remaining N − M bits, we called working space, are used
for intermediate storage and initially zero.

Although errors are inevitable in biochemical operations, error rates can be reduced
to tolerable levels. Under the Adleman-Lipton-sticker model, the error-resistant abil-
ity heavily depends on the DNA sequence of the memory strand. Up to the present,
the problem of strand design has been an open question. For more details, refer to
[4,28–30].

Design of the memory strand may be difficult, whereas, once an N -bits strand
found, it can be used and reused for any problem requiring N or fewer bits. In a sense,
the design is simplified for functionality of the strand can be designed and tested once
and for all.

2.2.2 DNA operations

Under the Adleman-Lipton-sticker model, several DNA operations on tubes are defined
to implement special algorithms, just as mathematical operations on a multiset of bit
strings. The following are some operations used in this paper.

There are five principal operations during computing: merge, extract, set, clear, and
discard.

• T := merge(T1, T2). Given two tubes T1 and T2, get a tube T containing all strands
in T1 or T2.

• (T0, T1) := extract(T , i). Given a tube T and a bit index i , get two tubes T0 and
T1, where T0 and T1 contains all those strands in T with bit i set as 0 and 1,
respectively.

• T := set(T0, i). Given a tube T0 and a bit index i , get a tube T by setting bit i of
all strands in T0 as 1.

123

176 J Math Chem (2008) 44:172–183

• T := clear(T0, i). Given a tube T0 and a bit index i , get a tube T by setting bit i of
all strands in T0 as 0.

• discard(T). Given a tube T , discard all strands in T .

During the preparation of the initial tube, three additional operations are necessary:
make, amplify, and separate.

• T := make(co). Given the code co of a DNA sequence, get a tube T of exactly
one single-stranded DNA molecule that is encoded with co.

• T := amplify(T0, p). Given a tube T0 and a positive integer p, get a tube T that
contains p copies of every DNA strand in T0.

• (T1, T0) := separate(T). Given a tube T , get two test tubes T1 and T0, each of
which contains one half of the contents in T .

For the purpose of obtaining the final result, we need two different operations:
detect and read.

• bool := detect(T): Given a tube T , get a Boolean variable bool, which assumes
value yes or no according as there exists a DNA strand in T or not.

• s := read(T): Given a tube T of at least one DNA strand, get a strand s in T .

For the implementation details of these biochemical operations, refer to [4].

2.3 The OLA problem

Consider a undirected simple graph G = (V, E), where V = {v1, v2, . . ., vn} and
E = {e1, e2, . . ., em}. Let n = |V |, m = |E |. The incidence matrix of G is an n × m
0–1 matrix M(G) = [mi j], where mi j = 1 or 0 according as the vertex vi is incident
to the edge e j or not.

A linear arrangement of the vertices, V , is a permutation π = π (1) π(2) . . . π(n)

of {1, 2, . . ., n}. The vertex vi is assigned the π(i)th position in the linear arrangement.
The cost of a permutation π is:

cost(π) =
∑

(i, j)�E

|π(i) − π(j)| (1)

The optimal linear arrangement (OLA) problem is to obtain a π with minimum
cost.

3 A DNA algorithm for the OLA problem

3.1 Basic idea

The basic idea behind our DNA algorithm for the OLA problem is to find an optimal
arrangement by checking all n-permutations of {1, 2, . . ., 2�log2 n�} with repetition
allowed (namely, P R(2�log2 n�, n)) by brute force. Specifically, the proposed algo-
rithm consists of four steps:

123

J Math Chem (2008) 44:172–183 177

Step 1: Construct set T of P R(2�log2 n�, n) permutations;
Step 2: Scan all elements of every permutation in T orderly, exclude illegal ones

with elements reduplicated or out of n, thus, get all linear arrangements of vertices V ;
Step 3: Accumulate contribution of element to the cost of the arrangement while

scanning in step 2;
Step 4: Pick out an arrangement in T so that the cost is minimum.

3.2 Strand design

To implement above idea, our DNA algorithm will perform operations on tubes of
(nK + n + m + L + 1)-bits DNA strands, where K = �log2 n�, L = �log2(nm)�+ 1.
f (x) = �log2 x� is the number of bits of a nonnegative binary integer x . Further-
more, every such strand is partitioned into solution space and working space that is
composed of vertex space, edge space, and cost space (Fig. 2):

• The solution space, which is composed of the 1st through (nK)th bits. This space
is subdivided into n segments with K bits each. For 1 ≤ j ≤ n, The j th seg-
ment set to i (obviously, 0 ≤ i ≤ 2K − 1) represents that vi+1 is assigned the j th
position, i.e., π(i +1) = j . Therefore, all possible P R(2K , n) = 2nK arrangement
candidates are recorded.

• The vertex space, which is composed of the (nK + 1)th through the (nK + n)th
bits. For 1 ≤ i ≤ n, the i th bit in this space will be logically viewed as VS(i).
Bit VS(i) set to 1 represents that vi is already in the permutation. In P R(2K, n)

permutations, all those unfeasible linear arrangements of graph G include two
situations: elements are repetitive or out of n. This space can be used to eliminate
the former.

• The edge space, which is composed of the (nK + n + 1)th through the (nK +
n + m)th bits. For 1 ≤ k ≤ m, the kth bit in this space will be logically viewed
as ES(k). According to equation (1), if ek = (i, j) and π(i) < π(j), the contri-
bution of vi to the cost of the arrangement is −π(i) and v j is +π(j). Bit ES(k)
set to 1 represents that the π(i)th segment of the solution space has been checked
while scanning the permutation. Due to the design of the solution space, the π(i)th
segment is always checked before the π(j)th.

• The cost space, which is composed of the (nK + n + m + 1)th through the
(nK + n + m + L + 1)th bits. For 1 ≤ i ≤ L + 1, the i th bit in this space will
be logically viewed as CS(i). Bits CS(1) ∼ CS(L) will be used to calculate and
store the value of the cost in form of complementary offset binary, where sign is

…K

n

solution space working space

vertex space

2K nK+1 nK+n… nK nK+n+1 … nK+n+m nK+n+m+1 … nK+n+m+L+1

nK m L+1

edge space cost space

Fig. 2 An (nK , n + m + L + 1) DNA strand

123

178 J Math Chem (2008) 44:172–183

assigned to CS(1). Bit CS(L + 1) will be used to store related carry information.
In spite of the fact that the upper bound on OLA for any simple graph G of order
n is (n−1)n(n+1)

6 [25], L bits are sufficient to store intermediate data of cost.

For our purpose, the code of the (nK +n+m+L+1)-bits memory strand is assumed
to be known. Henceforth, such a DNA strand is called as an (nK , n + m + L + 1)

strand. Given an (nK , n +m + L +1) strand s, we let s(p, q) denote the binary string
corresponding to the pth through qth bit regions of s, and s(CS(1) : CS(L)) the integer
formed by the values stored in bits CS(1) through CS(L).

To implement our DNA algorithm, several DNA subroutines are developed in sub-
sequent four subsections. Their time complexities are analyzed in terms of the numbers
of DNA operations involved.

3.3 DNA initialization

Subroutine T := dna_init(n, m, r)
Input: n, m, r : three positive integers.
Output: T : a tube that contains r copies of each (nK , n + m + L + 1) strand

that has 1 or 0 in each bit of the solution space and has 0 in each bit
of the working space.

begin
1. T := make(code(nK + n + m + L + 1));
2. T := amplify(T ,r × 2nK);
3. for i := 1 to nK
4. (T0, T1) := separate(T);
5. T1 := set(T1, i);
6. T := merge(T1, T0);
7. end {for i};

end.

Remark The parameter r is used to regulate the error-tolerance of our algorithm. The
error-resistant ability of the proposed algorithm can be further improved by employing
the techniques proposed by Boneh and Lipton [31] and Karp et al. [32].

By inspection of this subroutine, we get

Lemma 1 Subroutine dna_init is executed in 3nK + 2 tube operations.

3.4 DNA division

Subroutine (T1, T2, . . ., Tn) := dna_divi(T0, k)

Input: T0: a test tube of (nK, n + m + L + 1) DNA strands;
k: an integer that satisfies 1 ≤ k ≤ n.

Output: (T1, T2, . . ., Tn): n tubes, where Ti only contains all those stands in T0
with the kth segment of solution space set as (i − 1).

123

J Math Chem (2008) 44:172–183 179

begin
1. R := 0;
2. rename T0 as T1;
3. for i := 0 to K − 1
4. for j := 0 to R step 2K−i

5. (Tj+1, Tj+2K−i−1+1) := extract(Tj+1, K (k − 1) + i + 1);
6. end {for j};
7. if n > (R + 2K−i−1), then R := R + 2K−i−1;
8. end {for i};
9. if (j + 2K−i−1 + 1) > n, then discard(Tj+2K−i−1+1);

end.

The executing of subroutine dna_divi can be intuitively described in form of a
binary tree, as shown in Fig. 3 (for n = 11). By relative theorem about binary tree and
inspection of this subroutine, we derive

Lemma 2 Subroutine dna_divi is executed in n + 2 tube operations.

3.5 DNA addition

Given an integer d, we let [d]c denote its complementary offset binary representation.

Subroutine T := dna_add(T0, d)

Input: T0: a tube of (nK, n + m + L + 1) DNA strands;
d: an integer;

Output: T : a tube obtained by modifying every strand s in T0 in this way:
s(CS(1) : CS(L)) := s(CS(1) : CS(L)) + [d]c

begin
1. T := clear(T0, CS(L + 1));
2. for i :=0 to L − 1
3. (T0, T1) := extract(T , CS(L − i));
4. (T10, T11) := extract(T1, CS(L + 1));
5. (T00, T01) := extract(T0, CS(L + 1));

0***

T1

1***
T1 T9

00** 01** 10** 11**
T9 T13T1 T5

000* 001* 010* 011* 100* 101* 110* 111*
T1 T3 T5 T7

T9 T11 T13 T15

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16

i = 0

i = 1

i = 2

i = 3

0000 00010010 0011 0100 0101 0110 01111000100110101011 1100 1101 1110 1111

Fig. 3 An intuitive describe of the executing of subroutine dna_divi (for n = 11)

123

180 J Math Chem (2008) 44:172–183

6. if the (i + 1)th least significant bit of [d]c is 1, then
7. T10 := clear(T10, CS(L − i));
8. T10 := set(T10, CS(L + 1));
9. T00 := set(T00, CS(L − i));

10. end {if};
11. if the (i + 1)th least significant bit of [d]c is 0, then
12. T11 :=clear(T11, CS(L − i));
13. T01 := set(T01, CS(L − i));
14. T01 :=clear(T01, CS(L + 1));
15. end {if};
16. T1 :=merge(T11, T10);
17. T0 :=merge(T01, T00);
18. T :=merge(T1, T0);
19. end {for i};

end.

Lemma 3 Subroutine dna_add is executed in 9L + 1 tube operations.

3.6 DNA optimization

Subroutine s :=dna_opt(T)

Input: T : a nonempty test tube of (nK, n + m + L + 1) DNA strands.
Output: s: a DNA strand in T such that s(CS(2) : CS(L)) attains the minimum.

begin
1. for i = 2 to L
2. (T0, T1) := extract(T , CS(i));
3. if detect(T0) = yes, then rename T0 as T ;
4. else rename T1 as T ;
5. end {for i};
6. s := read(T);

end.

Because of positive cost and definition of complementary offset binary, we conclude
that a strand with minimum cost can be found after subroutine dna_opt.

Lemma 4 Subroutine dna_opt is executed in 2L − 1 tube operations.

3.7 Complete description of the DNA algorithm

Based on the previous discussions, we are in a position to describe a DNA algorithm
for the OLA problem.

Algorithm BS := dna_ola(G, r)
Input: G: an undirected simple graph, with n vertices, m edges and incident

matrix M .
r : a nonnegative integer, which is used as the error-resistant control
parameter.

123

J Math Chem (2008) 44:172–183 181

Output: a binary string BS = b1b2, . . . , bnK that represents an optimal linear
arrangement of given graph G.

begin
1. K := ⌈

log2 n
⌉

;
2. L := ⌈

log2 (nm)
⌉ + 1;

3. T1 := dna_init(n, m, r);
4. for k := 1 to n
5. (T1, T2, . . ., Tn) :=dna_divi(T1, k);
6. for i := 1 to n
7. (Ti0, Ti1) := extract(Ti , VS(i));
8. discard(Ti1);
9. Ti0 := set(Ti0, VS(i));

10. rename Ti0 as Ti ;
11. for j := 1 to m
12. if mi j = 1, then
13. (Ti0, Ti1) := extract(Ti , ES(j));
14. Ti0 := dna_add(Ti0,−k);
15. Ti0 := set(Ti0, ES(j));
16. Ti1 := dna_add(Ti1,+k);
17. Ti := merge(Ti0, Ti1);
18. end {if};
19. end {for j};
20. end {for i};
21. for i := 2 to n, T1 := merge(T1, Ti);
22. end {for k};
23. s := dna_opt(T1);
24. return(s(1, nK));

end.

4 The complexity of the proposed DNA algorithm

There are several criterions to measure a DNA algorithm:

• The solution space size, which determining the volume of tube. We call it volume
complexity;

• The maximal length of the DNA molecular. In Adleman-Lipton-sticker model,
measured as the length of the memory strand. We call it molecular complexity;

• The numbers of tubes used during the algorithm is executed. We call it space
complexity;

• The numbers of operations performed during the algorithm is executed. We call it
time complexity.

The following two theorems, which follow directly from Sect. 3.2, characterize the
volume complexity and the molecular complexity of the algorithm dna_ola, respec-
tively.

Theorem 1 For a graph G with n nodes and m edges, algorithm dna_ola has a
solution space of size 2nK .

123

182 J Math Chem (2008) 44:172–183

Theorem 2 For a graph G with n nodes and m edges, the memory strand used in
algorithm dna_ola consists of nK + n + m + L + 1 bit regions.

Theorem 3 and Theorem 4 describe the space complexity and the time complexity
of the algorithm dna_ola, respectively.

Theorem 3 For a graph G with n nodes and m edges, algorithm dna_ola requires 2n
tubes.

Proof After statement 5, tube T1 is divided into n tubes. For each tube Ti , two tubes
are required to accomplish statements 7–17. �	
Theorem 4 For a graph G with n nodes and m edges, algorithm dna_ola is executed
in 18nmL + 2n2 + 5nm + 3nK + 4n + 2L + 1 tube operations.

Proof By Lemma 1, statement 3 requires 3nK + 2 tube operations.
By Lemma 2, statement 4 costs n + 2 tube operations.
Since statements 7–19 can be executed simultaneously in n tubes, the loop rep-

resented by statements 6–20 is carried out in 18mL + 5m + 3 tube operations by
observation and in review of Lemma 3.

Therefore, the execution of the loop represented by statements 4–22 needs 18nmL+
2n2 + 5nm + 4n tube operations.

By Lemma 4, statement 23 is executed in 2L − 1 tube operations.
The claimed result follows. �	
Note that m ≤ n(n−1)

2 , K = ⌈
log2 n

⌉
, and L = ⌈

log2 (nm)
⌉+1, thus, the algorithm

dna_ola can be executed in O(n3 log2 n) tube operations.

5 Summary

Under the Adleman-Lipton-sticker model, a DNA algorithm for the OLA problem
has been presented. This algorithm is theoretically effective for it is executed in
O(n3 log2 n) tube operations on tubes of (nK + n + m + L + 1)-bits DNA strands.
With further advance in molecular biology techniques, it may play an important role
in practice. Moreover, the work of this paper provides more evidence for the ability
of DNA computation to solve the NP-hard problems.

Acknowledgments This work is financially supported by New Century Excellent Talent of Educa-
tional Ministry of China (Grant No. NCET-05–0759), Doctorate Funds of Educational Ministry of China
(Grant No. 20050611001) and Natural Science Funds of Chongqing CSTC (Grant Nos. 2006BB2331,
2005BB2191).

References

1. L.M. Adleman, Molecular computation of solution to combinatorial problems. Science 266, 1021–1024
(1994)

2. R.J. Lipton, DNA solution of hard computational problems. Science 268, 542–545 (1995)
3. Q. Ouyang, P.D. Kaplan, S. Liu, A. Libchaber, DNA solution of the maximal clique problem. Science

278, 446–449 (1997)

123

J Math Chem (2008) 44:172–183 183

4. S. Roweis, E. Winfree, R. Burgoyne, N.V. Chelyapov, M.F. Goodman, P.W.K. Rothemund, L.M.
Adleman, A sticker based model for DNA computation. J. Comput. Biol. 5, 615–629 (1998)

5. L.M. Smith, R.M. Corn, A.E. Condon, M.G. Lagally, A.G. Frutos, Q. Liu, A.J. Thiel, A surface-based
approach to DNA computation. J. Comput. Biol. 5, 255–267 (1998)

6. E. Winfree, F. Liu, L.A. Wenzler, N.C. Seeman, Design and self-assembly of two dimensional DNA
crystals. Nature 394, 539–544 (1998)

7. K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori, M. Hagiya, Molecular
computation by DNA hairpin formation. Science 288, 1223–1226 (2000)

8. E. Bach, A. Condon, E. Glaser, C. Tanguay, DNA models and algorithms for NP-complete problems.
J. Comp. Syst. Sci. 57, 172–186 (1998)

9. Q. Liu, L. Wang, A.G. Frutos, A.E. Condon, R.M. Corn, L.M. Smith, DNA computing on surfaces.
Nature 403, 175–179 (2000)

10. S.-Y. Shin, B.-T. Zhang, S.-S. Jun, Solving traveling salesman problems using molecular programming.
in Proceeding of Congress on Evolutionary Computation (1999) 994–1000

11. D. Xiao, W. Li, Z. Zhang, L. He, Solving maximum cut problems in the Adleman-Lipton model.
BioSystems 82, 203–207 (2005)

12. C.-N. Yang, C.-B. Yang, A DNA solution of SAT problem by a modified sticker model. BioSystems
81, 1–9 (2005)

13. C.-W. Yeh, C.-P. Chu, K.-R. Wu, Molecular solutions to the binary integer programming problem based
on DNA computation. BioSystems 83, 56–66 (2006)

14. K.-H. Zimmermann, Efficient DNA sticker algorithms for NP-complete graph problems. Comp. Phys.
Commun. 144, 297–309 (2002)

15. D. Adolphson, T.C. Hu, Optimal linear ordering. SIAM J. Appl. Math. 25(3), 403–423 (1973)
16. L.H. Harper, Optimal assignments of numbers to vertices. J. Soc. Indust. Appl. Math. 12(1), 131–135

(1964)
17. J. Bhasker, S. Sahni, Optimal linear arrangement of circuit components. J. VLSI Comp. Syst. 2(1–2),

87–109 (1987)
18. C.K. Cheng, Linear placement algorithms and applications to VLSI design. Networks 17(4), 439–464

(1987)
19. J. Díaz, J. Petit, M. Serna, A survey of graph layout problems. ACM Comput Surveys 34(3), 313–356

(2002)
20. W.-L. Lin, M. Sarrafzadeh, A linear arrangement problem with applications. in 1995 IEEE Int Symp

Circuits Syst(ISCAS’95) 1, 57–60 (1995)
21. R.M. Karp, Mapping the genome: some combinatorial problems arising in molecular biology. in Pro-

ceedings of the 25th Annual ACM Symposium on Theory of Computing 278–285 (1993)
22. F. Shahrokhi, O. Sỳkora, L.A. Sźekly, I. Vrto, On bipartite drawings and the linear arrangement prob-

lem. SIAM J Comp 30(6), 1773–1789 (2001)
23. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness

(Freeman, San Francisco, California, 1979)
24. S. Even, Y. Shiloach, NP-completeness of several arrangement problems. Technical Report #43 (Com-

puter Science Department, Technion, Haifa, Israel, 1975)
25. S. Horton, The optimal linear arrangement problem: algorithms and approximation. (PhD Thesis,

Georgia Institute of Technology, 1997)
26. A.J. McAllister, A new heuristic algorithm for the linear arrangement problem. Technical Report 99

126a (Faculty of Computer Science, University of New Brunswick, 1999)
27. T. Poranen, A genetic hillclimbing algorithm for the optimal linear arrangement problem. Foudamenta

Informaticate 68(4), 333–356 (2005)
28. A. Brenneman, A. Condon, Strand design for biomolecular computation. Theor. Comp. Sci. 287, 39–58

(2002)
29. P. Gaborit, O.D. King, Linear constructions for DNA codes. Theor. Comp. Sci. 334(1–3), 99–113

(2005)
30. A. Marathe, A.E. Condon, R.M. Corn, On combinatorial DNA word design. J. Comput. Biol. 8(3),

201–220 (2001)
31. D. Boneh, R.J. Lipton, Making DNA computers error resistant. in Proceedings of Second Annual

DIMACS Conference on DNA computing 102–110 (1996)
32. R.M. Karp, C. Kenyon, O. Warts, Error-resilient DNA computation. in Proceedings of Seventh Annual

ACM-SIAM Symposium on Discrete Algorithm 458–467 (1997)

123

	Molecular solution to the optimal linear arrangement problem based on DNA computation
	Abstract
	Introduction
	Preliminary knowledge
	DNA computation
	The Adleman-Lipton-sticker model
	Representation of information
	DNA operations
	The OLA problem
	A DNA algorithm for the OLA problem
	Basic idea
	Strand design
	DNA initialization
	DNA division
	DNA addition
	DNA optimization
	Complete description of the DNA algorithm
	The complexity of the proposed DNA algorithm
	Summary
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

